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Consideration is given to a model of turbulent flow in a roughness layer; the model is formed by the equa-
tions for turbulent momentum and turbulence-energy density and by free boundary conditions at self-estab-
lishing boundaries of the turbulent zone in the entire layer and in roughness cells. The model describes the
interactions of the flow with the elements of roughness and the processes in the cells of different scales. Cer-
tain calculated characteristics of turbulence in vegetation are given.

Introduction. The interaction of the flow of a viscous fluid with a rough boundary leads to its turbuliza-
tion. There are different methods of calculation of turbulence in the boundary layer above the roughness (see, e.g.,
[1, 2]). The most widespread is a semiempirical statistical theory of isotropic turbulence in a homogeneous half-
space; this theory relies on the works of A. N. Kolmogorov [3–5] and represents the phenomenon of turbulence as
a random process generated by the Navier–Stokes model of dynamics of a viscous fluid. By virtue of the small-
ness of the roughness-layer height as compared to the characteristic scales of flow, in this theory, evaluation of the
interaction of a moving fluid with a rough boundary is reduced to the establishment of the fact of turbulization of
the flow and the calculation of tangential stresses on its mean-statistical height as a solid wall. We do not con-
sider internal flow in the roughness layer.

However, in many applied problems, particularly in those of natural-biological and environmental trends, the
characteristic spatial scales of external flows are comparable to the height of inhomogeneities forming the roughness of
the underlying boundary. In such problems, it is important to calculate both the dynamics of internal flow in the
roughness layer and the interaction of the internal flow with the external flow above this layer. We give, as examples,
problems of space-time transformation of the characteristics of the atmospheric ground layer and transformation-related
energy and mass transfer in vegetation, agro- and geolandscapes, towns and cities, exchange processes in bottom areas,
those near the banks of rivers and reservoirs and coastal areas, and jet cooling in towers; also, we give problems of
wind erosion of the ground surface, etc.

The existing methods of calculation of turbulent flows in a roughness (see, e.g., [6, 7]) using the hypotheses
and relations of a semiempirical theory of isotropic turbulence in a homogeneous space enable one to evaluate only
the integral (average in a stochastic sense) resistance of the layer and do not allow for the contribution of local pul-
sating interactions of the flow with the roughness elements to the fluid dynamics in a roughness layer. Such an ap-
proach results in an incomplete description of the processes of momentum transfer in a roughness layer. It is
noteworthy that the absence of a noncontradictory and substantiated formalization of the methods of investigation of
the fluid dynamics in a roughness makes it difficult to obtain fully adequate experimental data necessary for generation
and checking of theoretical hypotheses. Moreover, the methodology and practice of experimental hydrodynamic inves-
tigations in a roughness are much more complex than such investigations in homogeneous regions. An additional dif-
ficulty arising in investigating flow in a roughness is the diversity of shapes of boundary roughnesses, which makes it
impossible to uniformly describe their geometry.

Despite the presence of the problems given above, the development of methods of investigation of the fluid
dynamics in a roughness remains a topical problem.

In the present work, which is a continuation of [8], we give equations for calculation of the characteristics of
turbulence in a periodic roughness under the conditions of neutral stratification of the boundary layer. These equations
have also been constructed based on the semiempirical statistical theory of turbulence, but they allow for the contribu-
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tions of the interactions of the pulsating flow with the roughness elements to the total integral dynamics of the fluid
in the layer and to the local fluid dynamics in the lacunas of the roughness and the interaction between all these dy-
namics. We give results of a numerical investigation of turbulence in a vegetation layer that realize some of the con-
structions proposed [9].

Models of Turbulence in a Roughness Layer. The object of investigation, as in [8], is the Navier–Stokes
initial boundary-value problem (NSIBVP)
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of a roughness layer. The roughness layer is diagrammatically presented in Fig. 1. Below, we also use the construc-
tions and notation from [8]. We represent the solution of the NSIBVP in the layer M0h:
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 and Q = (0 0 1)∗ are the projectors from the space R3 into the spaces R2 and R1 respectively, by

expansion in powers of the small parameters ε = rh−1, δ = lh−1, and η = dh−1 = n−1
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and will assume it to be a random vector function with average uεηδ
____

 and pulsation (uεηδ) ′ components, (uεηδ) =

(uεηδ
____

) + (uεηδ) ′.
Considering such roughnesses whose length is many times larger than the height, we may assume, without

distorting strongly the character of interaction of the fluid flow with the roughness, the roughness layer to be horizon-
tally infinite and the fluid flow in the averaged layer M to be stationary and plane-parallel. We redenote all the quan-

Fig. 1. Geometric scheme of a periodic-roughness layer.
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tities referring to the averaged layer and the cells by symbols M, Ω, and ω. Then the equations for the mean horizon-
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000) ′
____________

 =

(uβ
M) ′ (uβ

M) ′
__________

 = bM in the entire averaged layer M with allowance for the induced flow turbulization generated by the

roughness "grid" will have the form

d

dx3
 




1 − s1

M
 

k

M
 + ν 

du1
M

___

dx3




 = c1f

M
s1
M

 

u1

M
___



2
 + θ1

M

2
 b

M
 , (4)

d

dx3
 αbk

M
 
db

M

dx3
 + 1 − c1s

M
 k

M
 




du1
M

___

dx3





2

 = c1f
M

s1
M

u1
M

___
 

u1

M
___



2
 + θ1

M

2
 b

M
 −

− 







1

c
4
l
M − c1f

M
s1
M

  ∑ 

i=1

3

 θi
M

3





 b

M

3 ⁄ 2

 , (5)

where kM = 
4√c  lMθ3

M √bM , c = 0.046, c1s
M = sδ(1 − sε), s1

M = sδ, c1f
M = cf

δ, and αb = 0.073, and will prescribe a change
in the characteristics of turbulent flow only over the height of the roughness layer.

From the conditions of boundedness of the total energy of the flow in the roughness layer and above it
and from those of smooth fitting of the characteristics of the internal turbulent flow above the layer and the inter-
nal turbulent flow in the layer, it is natural to consider that the positions of the upper and lower boundaries and
the boundary hydrodynamic conditions for the problem of turbulence in a roughness are self-establishing (free, de-
termined in the process of solution of the problem). Thus, the problem of turbulence in a roughness belongs to
Stefan-type problems [10].

We formulate these conditions. According to the investigations of the boundary layer above a rough wall [1,

2], a logarithmic-over-the-height mean-velocity profile ui
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 = κ−1u∗H

M  ln H−1x3 + u1
M(H − 0)

_________
 is formed in the external

flow above the roughness in neutral stratification, and the boundary interaction of the external flow with the roughness

is expressed by the turbulent-friction stress τH = ρ(u∗H
M )2. An intermediate layer is formed between the internal flow

in the roughness and the external flow above it; the characteristics of flow in the interlayer at the heights x3 = h and

x3 = H smoothly fit the characteristics of the external and internal flows, and the problem itself of turbulence in the

roughness layer is extended to this intermediate region. The equations of turbulence in the intermediate region follow

from (4) and (5) if we set sδ(ε(η)) = 0. Therefore, we may specify the upper boundary conditions for the problem of
turbulence in a roughness at the height x3 = H, expressing them with allowance for the laws of a logarithmic bound-

ary layer by the dynamic velocity u∗H
M :
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To determine the unknown lower boundary of the logarithmic sublayer x3 = H and mean flow velocity u1
M(H)

______
 we must

prescribe, at any height H1 > H, the value of the mean flow velocity in the logarithmic region and specify the condi-
tions of smooth fitting of the characteristics of turbulence at the height H:
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Since turbulization of the flow in the roughness layer is maintained due to the mean-motion energy, the lower
boundary of turbulence in the roughness will be such a height x30 at which the average velocity of flow and the tur-
bulence flow into the layer lying below vanish:

x30 = x3u1
M

 (x30)
_______

 = 0 ,   
∂b

M

∂x3
 = 0 . (8)

We express the hydrodynamic conditions at the lower boundary x30 of the turbulent zone in the layer by the dynamic
velocity u∗

M at the level x30:
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The dynamic velocity u∗
M and the level x30 are the elements of solution of the turbulence problem.

Because of space constrictions, the models of local stationary turbulence will be given only for Ω cells. The
equations of mean velocity of turbulent motion and turbulent-energy density have the form
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By virtue of the assumed character of flow for horizontal flow velocities, the boundary conditions of the local
problem of turbulence in an Ω cell will be
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When x3 = h the boundary conditions in the hyperplane of the upper side of the Ω cell follow  from the con-

ditions of smooth fitting of the characteristics of local turbulence on both of its sides:
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The lower boundary conditions for the problem of local turbulence are analogous to (8). They also realize the
hypotheses on permeability of the roughness layer, boundedness of the total flow energy, and maintenance of turbu-
lence in the periodic set of roughness Ω cells due to the mean-motion energy. These assumptions result in the equali-
zation of the streamlines in the Ω cells on the hyperplane x30 = ϕ(Py, uεηδ, bεηδ, Γεηδ), on which we prescribe the
relations
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Algorithm of Construction of the Model of Turbulence in the Roughness Layer. This process involves the
following operations. Expansions (3) are substituted into Eqs. (2) and the initial boundary conditions [8]. The compo-
nents of the system with the same powers of the expansion parameters are arranged into equations, which are then av-
eraged and space-averaged. The expansion elements generated by the pulsation components of the solution are
expressed by the stationary characteristics of turbulence. For this purpose, we use the hypotheses from [4] and the er-
godicity of the geometric model of roughness and turbulence as a random process; the ergodicity ensures the unique-

ness and commutativity of operations of stochastic averaging and space averaging (∗) ̂ (  ∨ (l))
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The correlation of pressure and velocity pulsations is not allowed for.
As a result of the above procedures, we arrive at the equations for the turbulent momentum and the density

of the turbulent-energy flux in the entire roughness layer and in Ω and ω cells and also at the boundary conditions.
Thus, for the entire layer we have
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The Reynolds equations for the flows in Ω cells have the form
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and contain dyadic components which are the derivatives of the vectors of pulsation flow velocities in large-scale lacu-
nas with respect to the directions of the vectors of pulsation velocities in smaller-scale lacunas. These components de-
scribe an additional flow turbulization due to the interaction of velocity pulsations in lacunas of different scales. The
Reynolds equations for ω cells have an analogous form. The equations for the turbulence-energy density in the cells
are not given.

By virtue of the considerable excess of the length of the roughness layer over its height, the finiteness of the
dimensions of Ω and ω cells, and the periodicity of its arrangement in space, external flow above the roughness layer
and internal flow in the layer itself are considered, on the average, as steady-state and plane-parallel ones. Flows in
Ω and ω cells are assumed to be horizontally periodic. The horizontal symmetry of the roughness structure makes it
possible to assume that the local coordinates in the cells are the principal axes of the tensor of turbulence scales (mean
distances over which turbulent formations are capable of moving without losing their individuality.) The scales in the
averaged layer M and in Ω and ω cells are prescribed by expressions analogous to the existing ones [6, 7, 9] in form:
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fδ(0) = fδ(l) = fε(0) = fε(r) = fη(0) = fη(d) = 0 and fδ(ε(η))(w) are the characteristic functions prescribed or determined
experimentally and reflecting the distinctive features of the influence of the geometric roughness structure on the path-
ways traversed by vortices.

To express the components of the turbulent-stress tensor in terms of the stationary characteristics of turbulence
we use the Monin relations of the linear dependence of this tensor on the gradients of the mean flow velocities [4]:
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In formula (11), we have
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Using expansion (3) and relations (10) and with allowance for the character of flows in the entire

layer M and in Ω and ω cells, we express the correlations of pulsation velocities in the representation τij
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The additional turbulization of the flow in the averaged layer M and in Ω cells (in the Ω and ω cells) due
to the interaction of the velocity pulsations in them is prescribed as an additional component of the turbulence energy
in the layer M (Ω cells):
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ΩM(ωΩ) dependent on the ratio of the characteristic geometric scales and the intensity of

local turbulence in M, Ω, and ω regions may be determined from the results of experimental investigation of turbu-
lence in the roughness. Since the additional contributions to the turbulization of the flow are slight for low scale ra-
tios, we may assume that
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Characteristics of Turbulence in Vegetation. To solve the above-formulated problem of turbulence in a
roughness layer we may use the algorithm of numerical realization that has been developed for investigation of turbu-
lence in a layer of horizontally homogeneous vegetation [9]. Unlike the existing models [6, 7], the model of turbulence
in vegetation, just as the constructions given above, allows for the instantaneous square law of resistance of the rough-
ness (vegetation here) to the motion of the fluid; this law is the main force interaction in the turbulence problem in-
directly reflecting the contributions of local dynamics in the cells to the integral dynamics. The lower boundary itself
of turbulence in the roughness layer and the boundary conditions at this boundary and at the level of layer height are
assumed to be free. With the aim of simplifying the problem, we have eliminated from consideration the transition
zone between external logarithmic flow in the boundary layer and internal flow in the roughness; this zone, as the in-
vestigations [4, 6, 11] show, is no more than half the order of the roughness-layer height.

The algorithm of solution of the turbulence problem is based on transition from the boundary-value turbulence
problem to its inverse integro-functional equations for which finite-difference approximation and linearization are car-
ried out. The integro-functional equations are numerically solved by successive use of a modified Newton method with
control and the minimum residual method. The effective initial approximation in the Newton method is determined as
the solution of the Cauchy problem for a specially constructed differential-functional equation of continuation of the
solution of the turbulence problems with an initial condition — solution of the turbulence problem for a small-thick-
ness roughness layer. Some of the results of numerical modeling are given in Figs. 2 and 3. At the hypothesis level,
they have qualitatively been verified by laboratory-physical modeling [12], and they may be used as a first approxima-
tion to a complete solution of the general problem of turbulence in a roughness layer.

Conclusions. The models given in the present work enable one to take them as the initial basis for laboratory,
field, and numerical experiments on fluid dynamics in a roughness. The results of such experiments will make it pos-
sible to verify the hypotheses, check the theoretical constructions, identify the parameters, and more adequately formal-
ize the processes in the roughness.

This work was carried out with financial support from the Russian Foundation for Basic Research (project No.
01-05-64832).

NOTATION

d and r, vertical and horizontal steps of arrangement of elements on a single roughness "tree" (r, d << h), m;
l, step of arrangement of the "tree" in the layer, m; h, roughness-layer height, m; H, lower boundary of the logarithmic

Fig. 2. Flow velocity u(h) at the upper boundary of the layer and relative
depth z/h of penetration of the wind into the vegetation with different degrees
of thickness cfs: 1 and 4) h = 1 m; 2 and 5) h = 1.5 m; 3 and 6) h = 2 m.
u(h), m/sec; cfs, m−1.

Fig. 3. Flow velocity u(z) in a vegetation layer with different relative degrees
of thickness λ = s ⁄ s0, s0 = 1.1, cf = 0.03, and h = 1 m for the model with the
mean (1–3) and instantaneous (4–6) square-law resistance: 1 and 4) λ = 1; 2
and 5) λ = 1.4; 3 and 6) λ = 1.8.
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sublayer above the roughness, m; sδ(η) and sε(η), window "area" filled with roughness elements in a unit area of the

side of the Ω and ω cell across the flow and along it; uεηδ = col (u1
εηδ, u2

εηδ, u3
εηδ), flow-velocity vector, m/sec;

u∗H
M  and u∗

M(Ω), dynamic velocities at the upper and lower boundaries of turbulence in the entire layer (Ω cell), m/sec;

umdl
____

, flow-velocity vector and turbulent-energy density in the sublayer between the roughness and the logarithmic

boundary layer, m/sec; bmdl, turbulent-energy density in the sublayer between the roughness and the logarithmic

boundary layer, m2/sec2; LM(Ω(ω)), turbulence-scale tensor in the entire layer (in the Ω and ω cell), m; cf
δ(ε(η)), coeffi-

cient of dynamic resistance of roughness elements in the Ω and ω cell across the flow and along it; KM(Ω(ω)), coeffi-

cient of turbulent viscosity in the entire averaged layer M (in the Ω and ω cell), m2/sec; p, pressure in the fluid, Pa;

t, time, sec; ∂t(*), operator of differentiation of the vector (*) with respect to the argument t; Rm, space of the vectors

x = col (x1, ..., xm) of dimension m; ρ, density of the fluid, kg/m3; ν, kinematic viscosity of the fluid, m2/sec; σεηδ,

strain tensor of the flow, sec−1; ρ def ((1 − δ
~
)K^  Ω∇yu

001
____

), strain tensor of the Reynolds-stress field, kg/(m2⋅sec2);

θi
M(Ω (ω)), i = 1, 2, and 3, coefficients of anisotropy of pulsation flow velocities in the cells and in the entire layer;

∇εηδ, ∇εηδ(*) = ∇εηδ∇εηδ(*), and (div)εηδ(*) = s∇εηδ, (∗)t, operators differential over the space of the roughness

layer; (*), vector function from the domain of definition of the corresponding operator; s(∗), (#), (#)t((*) ⊗ (#)) = col

((*)i(#)i)i), scalar (Kronecker) product of the vectors (*) and (#); N&N, norm of the vector or the matrix &; δ
~
 =




δ
~

ij = 




1 ,
0 ,   

i = j
i ≠ j




; int Ω, interior of Ω; mes (Θ), measure of the set (Θ). Subscripts and superscripts: ε, δ, and η, quan-

tities characterizing the horizontal and vertical local processes in roughness cells; M(Ω(ω)), quantities characterizing the
processes in the entire layer (in large (small)) roughness cells; H, upper bound of the problem; mdl, middle boundary
layer between the external layer above the roughness and the internal layer in the roughness; *, lower boundary of tur-
bulence in the roughness; f, roughness elements; t, x, y, and z, differentiation with respect to variables; m, i, j, dimen-
sions of the vectors and their coordinate numbers.

REFERENCES

1. L. G. Loitsyanskii, Mechanics of Liquids and Gases [in Russian], Nauka, Moscow (1987).
2. H. Schlichting, Boundary-Layer Theory [Russian translation], Nauka, Moscow (1974).
3. A. N. Kolmogorov, A local structure of turbulence in an incompressible viscous fluid at very high Reynolds

numbers, Dokl. Akad. Nauk SSSR, 30, No. 4, 299–303 (1941).
4. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics [in Russian], Vol. 1, Nauka, Moscow (1965).
5. U. Frish, Turbulence. A. N. Kolmogorov’s Heritage [in Russian], Fazis, Moscow (1998).
6. A. S. Dubov, L. P. Bykova, and S. V. Marunich, Turbulence in the Canopy [in Russian], Gosmeteoizdat, Len-

ingrad (1978).
7. T. P. Meyers and U. K. T. Paw, Modelling the plant canopy micrometeorology with higher-order closure prin-

ciples, Agricul. Forest Meteorol., 41, 143–163 (1987).
8. E′. I. Smolyar, Dynamics of a fluid in a roughness layer, Inzh.-Fiz. Zh., 75, No. 4, 128–134 (2002).
9. E′. I. Smolyar, Turbulence in Heterogeneous Vegetation, Candidate’s Dissertation (in Engineering), Leningrad

(1990).
10. L. Friedman, Variational Principles and Free Boundary Problems [Russian translation], Nauka, Moscow (1990).
11. E′. I. Smolyar and M. Ya. Kuznetsov, Venting of homogeneous vegetation, Dokl. RASKhN, No. 2, 14–16

(2000).
12. N. F. Bondarenko, E. Z. Gak, M. Z. Gak, and E′. I. Smolyar, Hydrodynamic modeling of energy and mass

transfer in the "air–plant–soil" system, Dokl. VASKhNIL, No. 10, 11–13 (1989).

785


